GRAM: A framework for geodesic registration on anatomical manifolds
نویسندگان
چکیده
Medical image registration is a challenging problem, especially when there is large anatomical variation in the anatomies. Geodesic registration methods have been proposed to solve the large deformation registration problem. However, analytically defined geodesic paths may not coincide with biologically plausible paths of registration, since the manifold of diffeomorphisms is immensely broader than the manifold spanned by diffeomorphisms between real anatomies. In this paper, we propose a novel framework for large deformation registration using the learned manifold of anatomical variation in the data. In this framework, a large deformation between two images is decomposed into a series of small deformations along the shortest path on an empirical manifold that represents anatomical variation. Using a manifold learning technique, the major variation of the data can be visualized by a low-dimensional embedding, and the optimal group template is chosen as the geodesic mean on the manifold. We demonstrate the advantages of the proposed framework over direct registration with both simulated and real databases of brain images.
منابع مشابه
Ricci tensor for $GCR$-lightlike submanifolds of indefinite Kaehler manifolds
We obtain the expression of Ricci tensor for a $GCR$-lightlikesubmanifold of indefinite complex space form and discuss itsproperties on a totally geodesic $GCR$-lightlike submanifold of anindefinite complex space form. Moreover, we have proved that everyproper totally umbilical $GCR$-lightlike submanifold of anindefinite Kaehler manifold is a totally geodesic $GCR$-lightlikesubmanifold.
متن کاملA Geometry Preserving Kernel over Riemannian Manifolds
Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...
متن کاملElastic Geodesic Paths in Shape Space of Parametrized Surfaces
This paper presents a novel Riemannian framework for shape analysis of parameterized surfaces. In particular, it provides efficient algorithms for computing geodesic paths which, in turn, are important for comparing, matching, and deforming surfaces. The novelty of this framework is that geodesics are invariant to the parameterizations of surfaces and other shape-preserving transformations of s...
متن کاملSimple Geodesic Regression for Image Time-Series
Geodesic regression generalizes linear regression to general Riemannian manifolds. Applied to images, it allows for a compact approximation of an image time-series through an initial image and an initial momentum. Geodesic regression requires the definition of a squared residual (squared distance) between the regression geodesic and the measurement images. In principle, this squared distance sh...
متن کاملBayesian Principal Geodesic Analysis in Diffeomorphic Image Registration
Computing a concise representation of the anatomical variability found in large sets of images is an important first step in many statistical shape analyses. In this paper, we present a generative Bayesian approach for automatic dimensionality reduction of shape variability represented through diffeomorphic mappings. To achieve this, we develop a latent variable model for principal geodesic ana...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Medical image analysis
دوره 14 5 شماره
صفحات -
تاریخ انتشار 2010